<u>Situation</u>: Suppose you have an infinite sequence of statements S_1 , S_2 , S_3 , ... indexed by the natural numbers

Mathematical Induction: To prove all of these statements are true...

1) Base Case: Prove the first statement S_1 is true

2) Induction Step: Prove $\forall k \in \mathbb{N}$, if S_k is true, then S_{k+1} is true

Then you have proven that all of the statements S_1 , S_2 , S_3 , ... are true

<u>Note</u>: The starting index doesn't have to be 1. It could be any integer (Most common starting indexes are 1, 0, or 2)

<u>Ex 1</u>: Prove \forall integers $n \ge 0$, $n^2 + n$ is even

Proofs: Mathematical Induction <u>Ex 2</u>: Prove $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for all integers $n \ge 1$ Proofs: Mathematical Induction <u>Ex 3</u>: Prove $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$

<u>Ex 4</u>: Prove $\forall n \in \mathbb{N}$, $5^n - 2^n$ is a multiple of 3